PIKE-RAG – 微软亚洲研究院推出的检索增强型生成框架 | AI工具集


PIKE-RAG是什么

PIKE-RAG(sPecIalized KnowledgE and Rationale Augmented Generation)是微软亚洲研究院推出的检索增强型生成框架,能解决传统RAG系统在复杂工业应用中的局限性。PIKE-RAG基于提取、理解和应用专业知识,构建连贯的推理逻辑,引导大型语言模型(LLM)生成准确的回答。PIKE-RAG引入知识原子化(Knowledge Atomizing),将知识分解为细粒度的原子单元,用问题形式存储,便于高效检索和组织。PIKE-RAG提出多智能体规划模块,用在处理创造性问题,从多个角度进行推理和规划。
PIKE-RAG - 微软亚洲研究院推出的检索增强型生成框架 | AI工具集

PIKE-RAG的主要功能

  • 专业知识提取与理解:从多样化的数据源中提取领域特定的知识,转化为结构化的知识单元,为复杂问题提供精准的知识支持。
  • 推理逻辑构建:基于动态任务分解和知识感知的推理路径规划,逐步构建连贯的推理逻辑,引导语言模型生成准确的答案。
  • 多跳问题处理:基于知识原子化和任务分解,将复杂问题分解为多个原子问题,逐步解决多跳推理任务。
  • 创造性问题解决:引入多智能体系统,从多个角度进行推理和规划,激发创新性解决方案。
  • 分阶段系统开发:根据任务复杂性,支持从基础的事实性问题到高级的创造性问题的分阶段开发,逐步提升系统能力。

PIKE-RAG的技术原理

  • 知识原子化:将文档中的知识分解为细粒度的“原子知识”,用问题形式存储。原子知识作为检索的索引,更高效地匹配用户问题,提高知识检索的精度。
  • 知识感知任务分解:动态分解复杂问题为多个原子问题,根据知识库的内容选择最优的推理路径。基于迭代检索和选择,逐步收集相关信息并构建完整的推理逻辑。
  • 多智能体规划:在处理创造性问题时,引入多个智能体,每个智能体从不同角度进行推理和规划。基于多智能体的协同工作,生成更全面、更具创新性的解决方案。
  • 多粒度检索:在多层异构知识图谱中进行多粒度检索,从整体文档到细粒度的知识单元,逐步细化检索范围。结合多层知识图谱的结构,提升知识检索的效率和准确性。
  • 分阶段系统开发:根据任务复杂性,将RAG系统分为不同等级(L1-L4),逐步提升系统能力。每个等级针对特定类型的问题,从简单的事实性问题到复杂的创造性问题,逐步增强系统的推理和生成能力。

PIKE-RAG的项目地址

PIKE-RAG的应用场景

  • 法律领域:辅助法律专业人士解读法规、分析案例,提供精准的法律咨询和建议。
  • 医疗领域:帮助医生进行疾病诊断和治疗方案规划,提供基于专业知识的医疗建议。
  • 半导体设计:支持工程师理解复杂物理原理,优化半导体设计和研发流程。
  • 金融领域:用在风险评估和市场预测,为投资决策提供数据支持和分析报告。
  • 工业制造:优化生产流程和供应链管理,提升工业效率和质量控制。
© 版权声明

© 版权声明

相关文章

暂无评论

暂无评论...