ViTPose – 基于 Transformer 架构的人体姿态估计模型


ViTPose是什么

ViTPose 是基于 Transformer 架构的人体姿态估计模型。以普通视觉 Transformer 作为骨干网络,通过将输入图像切块并送入 Transformer block 来提取特征,再经解码器将特征解码为热图,实现对人体关键点的精准定位。ViTPose 系列模型具有多种规模版本,如 ViTPose-B、ViTPose-L、ViTPose-H 等,可根据不同需求选择。在 MS COCO 等数据集上表现出色,展现了简单视觉 Transformer 在姿态估计任务上的强大潜力。此外,ViTPose+ 作为改进版本,拓展到多种身体姿态估计任务,涵盖动物、人体等不同类型关键点,进一步提升了性能和适用范围。
ViTPose - 基于 Transformer 架构的人体姿态估计模型

ViTPose的主要功能

  • 人体关键点定位:能识别图像中人体的关键点,如关节、手、脚等,广泛应用于运动分析、虚拟现实、人机交互等领域。
  • 模型架构简单:采用普通的视觉 Transformer 作为骨干网络进行特征提取,再通过简单的解码器将特征解码为热图,实现关键点的精准定位。其模型结构简单,易于实现和扩展。
  • 可扩展性强:可以通过调整 Transformer 的层数、头数等超参数,将模型从 100M 扩展到 1B 参数,适应不同规模的任务需求,同时保持高性能。
  • 灵活性高:在训练范式上具有灵活性,支持不同的预训练和微调策略,以及多种输入分辨率和注意力类型,能处理多种姿态估计任务。
  • 知识可迁移:大模型的知识可以通过简单的知识令牌轻松迁移到小模型,进一步提升了模型的实用性和灵活性。

ViTPose的技术原理

  • 视觉 Transformer:ViTPose 使用标准的、非分层的视觉 Transformer 作为骨干网络进行特征提取。输入图像首先被切分成多个小块(patches),每个小块被嵌入到一个高维空间中,形成 tokens。这些 tokens 然后通过多个 Transformer 层进行处理,每一层包含多头自注意力(Multi-head Self-Attention, MHSA)和前馈网络(Feed-Forward Network, FFN)。
  • 特征提取:经过 Transformer 层的处理,最终输出的特征图具有丰富的语义信息,能够捕捉到图像中人体的关键点特征。
  • 热图预测:ViTPose 的解码器将编码器输出的特征图解码为热图。热图中的每个像素值表示该位置是某个关键点的概率。解码器有两种选择:
    • 标准解码器:使用转置卷积(transposed convolution)进行上采样,然后通过预测层生成热图。
    • 简单解码器:直接使用双线性插值进行上采样,生成热图。
  • 模型迁移:ViTPose 的知识可以通过简单的知识令牌(knowledge token)轻松迁移到小模型,进一步提升了模型的实用性和灵活性。
  • SOTA 性能:ViTPose 在多个姿态估计数据集上达到了新的 SOTA(State of the Art)和帕累托前沿。

ViTPose的项目地址

ViTPose的应用场景

  • 人体姿态估计:主要用于识别图像中人体的关键点,如关节、手、脚等,广泛应用于运动分析、虚拟现实、人机交互等领域。
  • 动物姿态估计:ViTPose+ 拓展到动物姿态估计任务,可以用于野生动物行为研究、宠物行为分析等。
© 版权声明

© 版权声明

相关文章

暂无评论

暂无评论...